A Fast Apparent Horizon Finder for 3-D Cartesian Grids in Numerical Relativity

Jonathan Thornburg (AEI Golm)

Motivation:

gravitational waves \Rightarrow binary BH coalescence

 \Rightarrow numerical relativity

⇒ want to **find apparent horizons** (BH surfaces) **at each time step** of a numerical evolution

existing AH finders are very slow (minutes) \Rightarrow want a faster AH finder

Main Ideas:

- assume AH is a Strahlkörper ("star-shaped region"), parameterize by r = h(angle) for some single-valued $h: S^2 \to \Re^+$
- AH equation becomes **elliptic PDE** for h on S^2 $\Theta(h, \partial_u h, \partial_{uv} h; g_{ij}, K_{ij}, \partial_k g_{ij}) = 0$
- finite difference in angle on S^2 ($N_{\rm ang}$ angular grid points)
- \bullet multiple grid patches to avoid z axis singularities
- solve by **Newton's method** in $N_{\rm ang}$ dimensions
- use "symbolic differentiation" to compute Jacobian matrix
- interpolate g_{ij} and K_{ij} to AH surface points, **compute** $\partial_k g_{ij}$ at AH surface points as part of (Hermite) interpolation

Results:

- very fast: finds AHs in a few seconds
- Cactus thorn AHFINDERDIRECT
- code will be freely available (GNU GPL) starting in summer 2003